第598章(1 / 4)
因此,当程诺把半曲面的二次虚点的图像全部在草稿纸上画出来后,对数字无比敏感的他发现了一个有趣的现象。
这些虚点,其高度可以描述曲线函数的导数。
同时,可以根据这个虚点,确定无穷阶曲线上有理点位置。
程诺并没有放弃这个偶然的发现。
用了一整天的时间,程诺进行演算,最终确定,这些经过半曲面映射下来的虚点,可以用于在每个正整数n的曲线上构建有理点,并且这些点的高度是模块形式的权重3/2的系数。
程诺之所以把这个虚点称之为“里程碑”式的发现,就是因为它的这两个性质。
无穷阶曲线上有理点的构建,一直是数学界存在的几大难题之一。
截止到现在,数学界仍未有一种通用的简单方便方法,迅速的求出任意无穷阶曲线上有理点的位置,并进行表述。
而这个虚点的出现,可以很轻易的改变这种现状。
另外,这个投影虚点还可以表示模数形式权重的系数,可用于各种系统的构建。
即便是程诺这样见过无数大风大浪的数学家,在看到这个虚点真正展现在他眼前的时候,也是无比的震撼。
另外,还有欣喜。
他没想到,在攻克BSD猜想的时候,会偶然触发这个大福利。
程诺暂时把这个虚点命名为程氏虚点,然后合上电脑,踏着朦胧的月色回到公寓。
即便身体上很是疲惫,但心情激动的他在床上辗转反侧到后半夜才睡着。
↑返回顶部↑
这些虚点,其高度可以描述曲线函数的导数。
同时,可以根据这个虚点,确定无穷阶曲线上有理点位置。
程诺并没有放弃这个偶然的发现。
用了一整天的时间,程诺进行演算,最终确定,这些经过半曲面映射下来的虚点,可以用于在每个正整数n的曲线上构建有理点,并且这些点的高度是模块形式的权重3/2的系数。
程诺之所以把这个虚点称之为“里程碑”式的发现,就是因为它的这两个性质。
无穷阶曲线上有理点的构建,一直是数学界存在的几大难题之一。
截止到现在,数学界仍未有一种通用的简单方便方法,迅速的求出任意无穷阶曲线上有理点的位置,并进行表述。
而这个虚点的出现,可以很轻易的改变这种现状。
另外,这个投影虚点还可以表示模数形式权重的系数,可用于各种系统的构建。
即便是程诺这样见过无数大风大浪的数学家,在看到这个虚点真正展现在他眼前的时候,也是无比的震撼。
另外,还有欣喜。
他没想到,在攻克BSD猜想的时候,会偶然触发这个大福利。
程诺暂时把这个虚点命名为程氏虚点,然后合上电脑,踏着朦胧的月色回到公寓。
即便身体上很是疲惫,但心情激动的他在床上辗转反侧到后半夜才睡着。
↑返回顶部↑